Medical Art Prosthetics: Composite Polymers

Team: Vincent Belsito (BSAC), Eduardo Enriquez (Team Leader), Laurie McKenna (BWIG), Piper Rawding (BWIG), Rodrigo Umanzor (Communicator), Nick Zacharias (BPAG)

Client: Mr. Gregory Gion

Advisors: Dr. Tracy Puccinelli, Mr. Russ Haas

Overview

- Problem Statement
- Background
- Design Specifications
- Motivation
- Materials and Methods
- Tear Abrasion Test
- UV Degradation Test
- Adhesive Strength Test
- Management Plan
- Budget
- Future Recommendations

Problem Statement

- Prostheses achieve adequate levels of realism and comfort, but have significant issues:
 - Expensive fabrication
 - Wear and tear
 - Loss of material
 - Discoloration
 - Goal: Devise a fabrication method using alternative polymers to change the surface properties of the prosthesis while maintaining the desirable properties
 - Increase durability
 - Decrease coefficient of friction
 - Maintain aesthetics

Figure 1: Recreation of a missing finger¹

- **Client:** Mr. Gregory Gion, BA, BS, MMS
 - Founder of Medical Arts Prosthetics, LLC
 - Maxillofacial prosthetist
 - Specializes in anaplastology and artistic recreation of skin aesthetic on prostheses

Mr. Gregory Gion, BA, BS, MMS¹

Design Specifications

- Design Specifications
 - Budget: \$500
 - Must look life-like
 - Increase tear strength
 - Lower µ than current silicone models
 - Decrease wear rate
 - Exhibit UV resistance
 - Not affect color accuracy or appearance

Figure 2: Recreation of a missing finger¹

Motivation

- Aid in patient integration into society
- Undergo deformation and discoloration
- High cost → Insurance replaces every 5 yrs → requires longevity of device

Figure 3: Fungal growth on a silicone prosthetic²

Figure 4: Recreation of a missing finger¹

1. Gion, G., MMS, & CCA. (n.d.). Home. Retrieved February 10, 2018, from http://www.medicalartprosthetics.com/ 2. A. Udagama, "URETHANE-LINED SILICONE FACIAL PROSTHESES," Journal of Prosthetic Dentistry, vol. 58, no. 3, pp. 351-354, Sep 1987.

Materials and Methods: Sample Fabrication

- Silicone Elastomer A & B (RTV-4420)
- Polyurethane (SC-92)
- Sofreliner (T) Primer
- Pasteur Micropipette
- Pressure Generator + Airbrush
- Hot Plate
- Vacuum Chamber

PU diluted into 30:70 (v/v) water:PU

- sprayed 5 times into petri dish covers
- allowed to cure via drying on hot plate
- 100 µL primer applied to each sample via paintbrush
- 50 minute wait time and 50:50 (m/m) silicone A:B added onto primed PU

Figure 5: Sample fabrication schematic

Tear Resistance Test (from ASTM D1938)

- Prep sample and make cut ⅔ of the way across center
- 2. Separate samples at rate of 20mm/min in MTS machine
- 3. Obtain load, displacement, and time values from test
- 4. Peak load normalized to sample thickness is considered the tear strength

Tear Resistance Test: Data Summary

- PU tear strength was shown to be significantly greater than silicone. However, results between studies remain inconsistent
- A mostly linear trend between sample thickness and peak load was obtained

Adhesive Strength Test (from ASTM D1867)

- 1. Fabricate a rectangular PU bound to silicone specimen with unbound ends
- 2. Separate ends of the sample at 25.4 mm/min
- 3. Obtain load, displacement, and time values
- 4. Plot in MATLAB to determine mean peel strength

Adhesive Strength: Test Data Summary

Adhesive Strength Testing Results	
Adhesive Strength Testing	Results
Peak Load	6.648 ± 4.928 N
Peak Peel Strength	0.960 ± 0.709 N
Mean Peel Strength	0.626 ± 0.502 N

UV Degradation Test: ASTM D1148

- 1. Samples placed under RSM Type 275 W, 125 V sun-lamp bulb contained in metal housing test chamber
- 2. Sample exposed to radiation for lamp from 0 to 340 hours and imaged at 10 hour intervals
- 3. Degree of discoloration is rated against control group and original sample images, samples were analyzed qualitatively and quantitatively using a light box colorimeter

UV Degradation Test: Data Summary

- Observed degradation of PU coating on side of samples
- No visual discoloration under natural light
- Light box imaging showed 20% darkening from t=0 to t=340 hr
- Fluorescent imaging showed further degradation and formation of white spots on surface of sample
- Results showed 50% less degradation compared to strictly silicone sample

Tribology: Coefficient of Friction and Wear

- Sample mounted on linear Nano Tribometer
- Nano Tribometer set to oscillate at 50, 20, 10 µN to maintain full range of motion of the probe
- Device returns friction and penetration depth, allowing for determination of the CoF and wear rate based on the following relationship:

K = wear rate V = worn volume F = normal force S = sliding distance

Tribology: Coefficient of Friction Summary

- Friction values are positive and negative because the probe moves in an oscillatory manner
- Hysteresis curve is indicative of the coefficient of friction value recorded during each iteration

Coefficient of Friction: Data Summary

 Results demonstrate a significantly lower CoF for the PU coated samples than either Silicone varian Reduce the likelihood of sample catching on fabrics and different textures

Tribology: Wear Rate Summary

- All materials exhibited elastic deformation during testing, hence volume loss could not be adequately derived
- Penetration values do not accurately reflect respective wear rates
- Rather, these values are indicative of the elastic modulus of each material → PU coated samples were found to be more elastic

Management Plan

• Fall 2017

- Meet with client and advisors
- Background research
- Design development
- Material and mechanical testing

• Spring 2018

- Fabrication research
- Design Development
- Mechanical testing
- Fabrication
- Characterization and statistical analysis
- Working prototype

					Period Highlig	ht 31	W.	Plan	Dural	lion	M /	Actual	Start			i Co	mplet	e	00	Acti	ual (beye	nd p	plan	į –		%	Cur	nplet	e (b	yond p
ACTIVITY	PLAN START	PLAN DURATION	ACTUAL START	ACTUAL DURATION	PERCENT COMPLETE	PER		4 5	5 6	78	9 1	10 11	12	13	14 1	5 1	\$ 17	18	19	2.0	21	22	23 3	14	25 2	6 2	7 2	\$ 29	30	31	32
Meet with advisors, client, and teammates; Assign team roles	1	2	I	2	100%																										
Background Research	1	15	1	15	100%																										
Brainstorming Design Ideas	2	2	2	2	100%																										
PDS	2	1	2	1	100%																										
Preliminary Oral Presentations	3	1	3	1	100%																										
Preliminary Deliverables	3	2	3	2	100%																										
Material Testing	6	23	6	23	100%																										
Mechanical Testing	9	6	9	6	100%																										
Final Poster Presentations	10	5	10	5	100%																										
Final Deliverables	1.0	6	1.0	6	100%																										
Fabrication research	17	15	17	15	100%						1				1	1															
Brainstorming Fabrication Design Ideas	19	2	19	2	100%												С		-												
PDS	19	1	19	1	100%																										
Preliminary Oral Presentations	20	1	20	1	100%																										
Preliminary Deliverables	20	2	20	2	100%																										
Fabrication	18	14	18	14	100%																										
Mechanical Testing	20	11	2.0	11	100%																								Ĵ		
Statistical Analysis	28	3	28	3	100%																										
Final Poster Presentations	30	1	30	1	100%																										
Final Deliverables	31	1	31	1	100%																										
Period 1 start: 9/8/2017	-						-	-		-	-		-	_	_	-	-	-	-	_	_	_	_	-	-	_	-	-	-		

Budget

Material	Product Number	Cost
Silicone Elastomer	A-RTV-20	\$41.95
Silicone Elastomer	A-2186-F	\$139.95
Sofreliner Tough Primer 10ML	76750186	\$46.00
Single Component Aliphatic Water-Based Coating (Polyurethane)	SC-92	\$54.00

Miscellaneous	Cost
Shipping and Handling and Tax	~ \$10.00
Final Poster	~ \$30.00

- Total Spent: \$321.90
- \$178.10 **under budget**

Future Recommendations

- More complete UV testing and analysis using colored silicone
- Optimization of the fabrication method for use by an anaplastologist
- Perform aesthetic finger prosthetic clinical trial utilizing this method to assess performance over time during daily use
- Further testing with color retention after PU coating in addition to testing into the ease of coloring PU

Acknowledgements

- Ahmet Deniz Usta
- Dr. Tracy Puccinelli
- Mr. Russ Haas
- Mr. Gregory Gion

References

- J. Wang, W. J. Xia, K. Liu, and X. L. Tuo, "Improved Adhesion of Silicone Rubber to Polyurethane by Surface Grafting," Journal of Applied Polymer Science, vol. 121, no. 3, pp. 1245-1253, Aug 2011.
- F. Abbasi, H. Mirzadeh and A. Katbab, "Modification of polysiloxane polymers for biomedical applications: a review", *Polymer International*, vol. 50, no. 12, pp. 1279–1287, 2001.
- D. F. Butler, G. G. Gion, and R. P. Rapini, "Silicone auricular prosthesis," *Journal of the American Academy of Dermatology*, vol. 43, no. 4, pp. 687–690, 2000.
- Deepthi, "Maxillofacial Prosthetic Materials An Update," *Journal of International Medicine and Dentistry*, vol. 3, no. 1, Feb. 2016.
- K. Prasad, A. A. Swaminathan, and A. Prasad, "Fabrication of a Silicone Auricular Prosthesis A Case Report," *Nitte University Journal of Health Science*, vol. 6, no. 1, pp. 91–97, Mar. 2016.
- P. Kumar, "An Silicone Auricular Prosthesis Along with Retentive Aids- A Case Report," *Journal Of Clinical And Diagnostic Research*, 2014.

Thank you!

