Medical Art Prosthetics: Composite Polymers

Team: Vincent Belsito (BSAC), Eduardo Enriquez (Team Leader), Laurie McKenna (BWIG), Piper Rawding (BWIG), Rodrigo Umanzor (Communicator), Nick Zacharias (BPAG)

Client: Mr. Gregory Gion

Advisors: Dr. Tracy Puccinelli, Mr. Russ Haas

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

Overview

- Problem Statement
- Background
- Design Specifications
- Motivation
- Previous Work Summary
- Improving Tests and Fabrication
- Additional Tests
- Final Prototype
- Management Plan
- Budget

Problem Statement

- Prostheses achieve adequate levels of realism and comfort, but have significant issues:
 - Expensive fabrication
 - Significant wear and tear
 - Loss of material
 - Discoloration
 - Goal: Devise a fabrication method using an alternative polymer to change surface properties of the prosthesis while maintaining the desirable properties
 - Increase durability
 - Decrease coefficient of friction
 - Maintain aesthetics

Figure 1: Recreation of a missing finger¹

- Client: Mr. Gregory Gion, BA, BS, MMS
 - Founder of Medical Arts Prosthetics, LLC
 - Maxillofacial prosthetist
 - Specializes in anaplastology and artistic recreation of skin aesthetic on prostheses

Mr. Gregory Gion, BA, BS, MMS¹

Design Specifications

Design Specifications

- Budget: \$500
- Must look life-like
- Lower µ than current silicone models
- Decrease wear rate
- Must exhibit UV resistance
- Must not affect color accuracy or appearance

Figure 2: Recreation of a missing finger¹

Motivation

- Aid in patient integration into society
- Undergo deformation and discoloration
- High cost → requires longevity of device

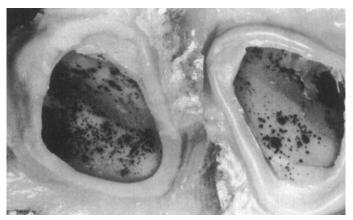


Figure 3: Fungal growth on a silicone prosthetic²

Figure 4: Recreation of a missing finger¹

1. Gion, G., MMS, & CCA. (n.d.). Home. Retrieved February 10, 2018, from http://www.medicalartprosthetics.com/ 2. A. Udagama, "URETHANE-LINED SILICONE FACIAL PROSTHESES," Journal of Prosthetic Dentistry, vol. 58, no. 3, pp. 351-354, Sep 1987.

Fall 2017 Summary

Sample Fabrication

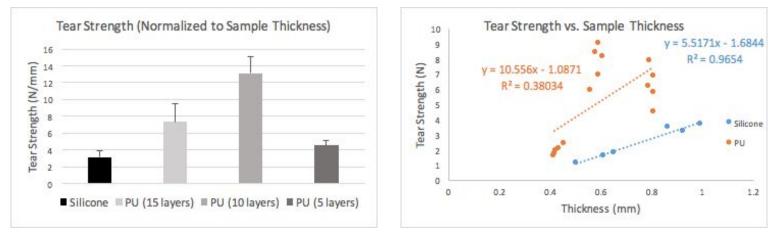
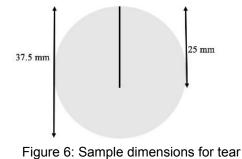




Figure 5: Current sample fabrication schematic

Fall 2017 Summary - Tear Strength

- PU was significantly greater at 10 layers (consecutive coats were applied)
- Limited sample size and a non-linear trend between sample thickness and tear strength for PU

strength testing

Fall 2017 Summary - Peel Strength

Peak Load	6.648±4.928 N
Peak Peel Strength	0.960±0.709 N/mm
Mean Peel Strength	0.626±0.502 N/mm

- Limited sample size and significant variation in measured strength
- Application method was incompatible with fabrication
 - Ideal method: prime silicone and spray on PU coat with an airbrush

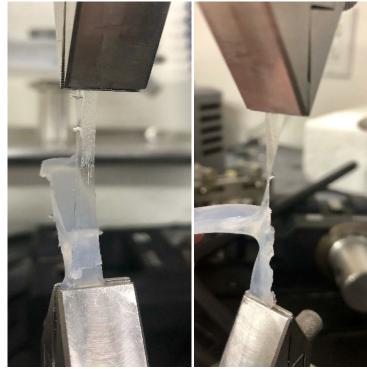


Figure 7: Peeling at the bond interface (left) and peeling into the silicone matrix (right)

Fall 2017 Summary - Coefficient of Friction

Coefficients of Friction of Polyurethane and Silicone

Material	Average St Coefficient	atic of Friction	Average Kinetic Coefficient of Frictio					
600 grit Sandpaper	PU	0.2474	PU	0.2386				
	Silicone	0.2345	Silicone	0.2186				
Jean Pocket Fabric –	PU	0.2397	PU	0.2250				
99% cotton, 1% spandex	Silicone	0.2161	Silicone	0.2050				



Fig. 8: Setup for testing coefficient of friction³

- Counterintuitive results
 - Limited sample size
 - Equipment resolution was incompatible with sample masses

Improving Tests and Fabrication

Tests

- Tear Test
 - Increase sample size
- Peel Test
 - Application comparison
- Coefficient of Friction Test
 - Increase sample mass and amount of samples
- Fabrication
 - Ensure consistency in sample fabrication Figure 9: Process of recreation of a missing finger¹

1. Gion, G., MMS, & CCA. (n.d.). Home. Retrieved February 10, 2018, from http://www.medicalartprosthetics.com/

Spring 2018 - Additional Tests and Evaluation

- Taber Abrasion Test
 - ANSI/ISEA 105 \rightarrow ASTM D3884 & ASTM D3389
 - PU lined silicone on Rotary Platform Abrader
 - 500g load for testing for 500 revolutions
- UV Exposure Test
 - ASTM D 1148-95
 - PU lined silicone UV light
 - 6, 24, 48, 100, 500, 1000, 1500 hours
 - ► qualitative ∆ in color
- Water Absorption Test
 - ASTM D 471-06
 - PU, silicone, PU lined silicone in DW
 - Δ in mass every 2 weeks

Figure 10: Rotary Platform Double Head Abrader for ASTM D3884

%Absorption =
$$100\% * \frac{W_i - W_f}{W_i}$$

Final Design and Prototype

- Prosthetic silicone finger with PU coating
 - Silicone in mold primed first, then PU is applied
- Maintenance and Long-Term Use
 - design allows for routine cleaning and washing

Figure 11: Mold used for prosthetic fingers

Management Plan

Spring 2018

- Fabrication research
- Design Development
- Mechanical testing
- Fabrication
- Characterization and statistical analysis
- Working prototype

Testing Plan

- UV {Feb 12 May 1}
- Tear Strength {Feb 19 -23}
- Peel Strength {Feb 19 23}
- Water Absorption {Feb 20 May 1}
- Coefficient of Friction {Feb 26 Mar 2}
- Wear Resistance {Mar 5-9}

					Period Highlight	9 9	Plan Da	oration	1	vental	Start		% Ce	molete	-	A	ctual	(beya	and y	plan)			56 C	mple	te (b)	eyond	ph
ACTIVITY	PLAN START	PLAN DURATION	ACTUAL START	ACTUAL DURATION	COMPLETE	PERIODS		678	9 1	0 11	12 1	3 14	15 1	6 17	18 1	9 21) 21	22	23 .	24 2:	5 26	27	28 2	9 34	31	32	
Meet with advisors, client, and teammates; Assign team roles	1	2	I	2	100%													1.01									
Background Research	1	15	1	15	100%																						
Brainstorming Design Ideas	2	2	2	2	100%																						
PDS	2	1	2	1	100%																						
Preliminary Oral Presentations	3	1	3	1	100%																						
Preliminary Deliverables	3	2	3	2	100%																						
Material Testing	6	23	6	23	60%																						
Mechanical Testing	9	6	9	6	100%																						
Final Poster Presentations	10	5	10	5	100%							8															
Final Deliverables	10	6	10	6	100%																						
Fabrication research	17	15	17	15	15%							101															
Brainstorming Fabrication Design Ideas	19	2	19	2	50%															10000000	100000	Longuage					
PDS	19	1	19	1	0%																						
Preliminary Oral Presentations	2.0	1	20	Ľ	0%																						
Preliminary Deliverables	20	2	20	2	0%																						
Fabrication	18	14	18	14	15%																						
Mechanical Testing	2.0	11	20	11	0%																						
Statistical Analysis	2.8	3	28	3	0%																						
Final Poster Presentations	30	1	30	U.	0%																						
Final Deliverables	31	1	31	1	0%																						

Period 1 start: 9/8/2017

Beginning of Fall Semester: Period 1 Beginning of Spring Semester: Period 16

Budget

Material	Product Number	Cost
Silicone Elastomer	A-RTV-20	\$41.95
Silicone Elastomer	A-2186-F	\$139.95
Sofreliner Tough Primer 10ML	76750186	\$46.00
Single Component Aliphatic Water-Based Coating (Polyurethane)	SC-92	\$54.00

Miscellaneous	Cost
Shipping and Handling and Tax	~ \$10.00
Final Poster	~ \$30.00

- Total Spent: ~ \$321.90
- Budget Remaining: ~ \$178.10

References

- J. Wang, W. J. Xia, K. Liu, and X. L. Tuo, "Improved Adhesion of Silicone Rubber to Polyurethane by Surface Grafting," Journal of Applied Polymer Science, vol. 121, no. 3, pp. 1245-1253, Aug 2011.
- F. Abbasi, H. Mirzadeh and A. Katbab, "Modification of polysiloxane polymers for biomedical applications: a review", *Polymer International*, vol. 50, no. 12, pp. 1279–1287, 2001.
- D. F. Butler, G. G. Gion, and R. P. Rapini, "Silicone auricular prosthesis," *Journal of the American Academy of Dermatology*, vol. 43, no. 4, pp. 687–690, 2000.
- Deepthi, "Maxillofacial Prosthetic Materials An Update," *Journal of International Medicine and Dentistry*, vol. 3, no. 1, Feb. 2016.
- K. Prasad, A. A. Swaminathan, and A. Prasad, "Fabrication of a Silicone Auricular Prosthesis A Case Report," *Nitte University Journal of Health Science*, vol. 6, no. 1, pp. 91–97, Mar. 2016.
- P. Kumar, "An Silicone Auricular Prosthesis Along with Retentive Aids- A Case Report," *Journal Of Clinical And Diagnostic Research*, 2014.

Thank you!

